Respuesta :

Answer:

[tex]AD = 403.75[/tex]

[tex]CD = 115.70[/tex]

[tex]BD = 294.93[/tex]

Step-by-step explanation:

Given

The above triangle

Solving (a): AD

To solve AD, we consider triangle ACD.

Using cosine formula:

[tex]cos(\angle A) = \frac{AD}{AC}[/tex]

Where:

[tex]\angle A =16[/tex]

[tex]AC = 420[/tex]

So:

[tex]cos(16) = \frac{AD}{420}[/tex]

[tex]AD = 420 * cos16[/tex]

[tex]AD = 420 * 0.9613[/tex]

[tex]AD = 403.75[/tex]

Solving (b):  CD

Here, we make use of Pythagoras theorem:

[tex]AC^2 = AD^2 + CD^2[/tex]

So:

[tex]420^2 = 403.75^2 + CD^2[/tex]

[tex]176400 = 163014.0625 + CD^2[/tex]

[tex]CD^2 = 176400 - 163014.0625[/tex]

[tex]CD^2 = 13385.9375[/tex]

[tex]CD = \sqrt {13385.9375[/tex]

[tex]CD = 115.70[/tex]

Solving (c): BD

Here, we make use of Pythagoras theorem:

[tex]AB^2 = AD^2 + BD^2[/tex]

[tex]BD^2 = AB^2 - AD^2[/tex]

[tex]BD = \sqrt{AB^2 - AD^2[/tex]

[tex]BD = \sqrt{500^2 - 403.75^2[/tex]

[tex]BD = \sqrt{86985.9375[/tex]

[tex]BD = 294.93[/tex]