Answer:
[tex]y = 6[/tex]
Step-by-step explanation:
To find [tex]y[/tex], we need to eliminate [tex]x[/tex] in this system of equations:
[tex]3\cdot x + 2\cdot y = 27[/tex] (1)
[tex]3\cdot x - y = 9[/tex] (2)
From (1) and (2):
[tex]x = \frac{27-2\cdot y}{3}[/tex]
[tex]x = \frac{9+y}{3}[/tex]
Then, we equalize both expressions and solve for [tex]y[/tex]:
[tex]\frac{27-2\cdot y}{3} = \frac{9+y}{3}[/tex]
[tex]27-2\cdot y = 9 + y[/tex]
[tex]3\cdot y = 18[/tex]
[tex]y = 6[/tex]