Respuesta :

Answer:

[tex]g^{-1}(x) =(\frac{x}{10})^{5} +2[/tex]

Step-by-step explanation:

So we have the function [tex]g(x)=10\sqrt[5]{x-2}[/tex]. To find the inverse, we first set the function equal to y:

[tex]y=10\sqrt[5]{x-2}[/tex]

Then, we switch all the y and x variables, like this:

[tex]x=10\sqrt[5]{y-2}[/tex]

Now, we solve for y to find the inverse function:

[tex]x=10\sqrt[5]{y-2}[/tex]

[tex]\frac{x}{10} =\sqrt[5]{y-2}[/tex]

[tex](\frac{x}{10})^{5} =y-2[/tex]

[tex](\frac{x}{10})^{5} +2=y[/tex]

[tex]y=(\frac{x}{10})^{5} +2[/tex]

[tex]g^{-1}(x) =(\frac{x}{10})^{5} +2[/tex]