Respuesta :

Answer:

The equation in the slope-intercept form will be:

  • [tex]\:y=-\frac{x}{2}-1[/tex]

Step-by-step explanation:

Given

  • Point (6, -4)
  • Slope m = -1/2

Important Tip:

The slope-intercept form of the line equation

[tex]y = mx+b[/tex]

where

  • [tex]m[/tex] represents the slope
  • [tex]b[/tex] is the y-intercept

In our case,

  • (x, y) = (6, -4)
  • m = -1/2

Step 1 of 2

Determine the y-intercept b

substitute m = -1/2 and (x, y) = (6, -4) in the slope-intercept form of the line equation

[tex]y = mx+b[/tex]

[tex]-4\:=-\:\frac{1}{2}\left(6\right)+b[/tex]

switch sides

[tex]-\frac{1}{2}\left(6\right)+b=-4[/tex]

[tex]-3+b=-4[/tex]

Add 3 to both sides

[tex]-3+b+3=-4+3[/tex]

simplify

[tex]b=-1[/tex]

Thus, the y-intercept b = -1

Step 2 of 2

substitute the values

substitute b = -1 and m = 1/2 in the slope-intercept form of the line equation

[tex]y = mx+b[/tex]

[tex]y=-\frac{1}{2}x+\left(-1\right)[/tex]

[tex]\:y=-\frac{x}{2}-1[/tex]

Conclusion:

Therefore, the equation in the slope-intercept form will be:

[tex]\:y=-\frac{x}{2}-1[/tex]

The graph of the line equation is also attached.

Ver imagen asifjavedofficial