Given:
The numbers are written in scientific notation.
To find:
The standard form of given numbers.
Solution:
Formula used:
[tex]a^{-n}=\dfrac{1}{a^n}[/tex]
(a)
[tex]7.2\times 10^{-8}=7.2\times \dfrac{1}{10^8}[/tex]
[tex]7.2\times 10^{-8}=\dfrac{7.2}{1000000000}[/tex]
[tex]7.2\times 10^{-8}=0.000000072[/tex]
(b)
[tex]6.3\times 10^{-9}=6.3\times \dfrac{1}{10^9}[/tex]
[tex]6.3\times 10^{-9}=\dfrac{6.3}{10000000000}[/tex]
[tex]6.3\times 10^{-9}=0.0000000063[/tex]
(c)
[tex]4.54\times 10^{-5}=4.54\times \dfrac{1}{10^5}[/tex]
[tex]4.54\times 10^{-5}=\dfrac{4.54}{100000}[/tex]
[tex]4.54\times 10^{-5}=0.0000454[/tex]
(d)
[tex]7.041\times 10^{-10}=7.041\times \dfrac{1}{10^{10}}[/tex]
[tex]7.041\times 10^{-10}=\dfrac{7.041}{100000000000}[/tex]
[tex]7.041\times 10^{-10}=0.0000000007041[/tex]
Therefore, [tex]7.2\times 10^{-8}=0.000000072, 6.3\times 10^{-9}=0.0000000063, 4.54\times 10^{-5}=0.0000454,[/tex]
[tex]7.041\times 10^{-10}=0.0000000007041[/tex].