Respuesta :

Answer:

this is your answer. I think it is right.

Ver imagen Аноним

Answer:

see the answers

Step-by-step explanation:

to understand this

you need to know about:

  • factoring
  • lCD
  • PEMDAS

tips and formulas:

  • L.C.D=lowest common denominator

let's solve:

[tex]1) \sf\frac{7}{m - 6} \: , \frac{1}{m} \\ [/tex]

denominators are m-6,m

therefore

the lowest common denominator is

(m-6)(m)

[tex] \sf\frac{1}{n - 1} \: , \frac{1}{ {n}^{2} - 2n + 1 } [/tex]

denominators n-1,n²-2n+1

step-1

factor n²-2n+1 to find the lowest common denominator

  • use (a-b)²=a²-2ab+b to factor n²-2n+1

therefore

  1. (n)²-2.n.1+(1)²
  2. (n-1)²

therefore

the L.C.D of the second expression is

(n-1)²

alternative form

(n-1)(n-1)

[tex]3) \tt\frac{k}{ {h }^{2} - 5h + 6} \: , \frac{3}{h -3 } [/tex]

step-1

factor out h²-5h+6 to find L.C.D

  1. rewrite -5h as -2h-3h: h²-2h-3h+6
  2. factor out h: h(h-2)-3h+6
  3. factor out -3: h(h-2)-3(h-2)
  4. group: (h-3)(h-2)

therefore

the L.C.D of the third expression is

(h-3)(h-2)