contestada

1. Find the area of the shaded sector.
2. Find the length of the arc defined by the sector.

1 Find the area of the shaded sector 2 Find the length of the arc defined by the sector class=

Respuesta :

Answer:

1. 150π sq.ft  2. 10π ft

Step-by-step explanation:

Part 1

Equation: Area of a sector = [tex]\frac{x}{360}[/tex] × π[tex]r^{2}[/tex]

Where:

x = internal angle

r = radius of circle

Values from problem:

x = 60

r = 30

Plug values into equation:

Area of sector = [tex]\frac{60}{360}[/tex] × π[tex]30^{2}[/tex]

Simplify:

60 divided by 30 equals [tex]\frac{1}{6}[/tex] and 30 squared equals 900 so...

[tex]\frac{1}{6}[/tex] × 900π

900π divided by 6 equals 150π so...

[tex]\frac{900}{6}[/tex] × π = 150π

150π sq. ft

Part 2

Equation: Arc length = [tex]\frac{x}{360}[/tex] × 2πr

Where:

x = internal angle

r = radius of circle

Values from Problem:

x = 60

r = 30

Plug values into equation:

Arc length = [tex]\frac{60}{360}[/tex] × 2π30

Simplify:

60 divided by 360 equals [tex]\frac{1}{6}[/tex], and 2π × 30 equals 60π so...

[tex]\frac{1}{6}[/tex] × 60π

60π divided by 6 is 10π

[tex]\frac{60}{6}[/tex]π = 10π

10π ft