Respuesta :
Answer: C. 5.9 %
Step-by-step explanation:
Here, the Present amount of loan, PV = 21,349 - 3000 = 18,349
Monthly payment, P = 352
Total number of periods, n = 12\times 5 = 60
Let the APR = r
Since, [tex]P = \frac{r/2(PV)}{1-(1+r/12)^{-n}}[/tex]
⇒ [tex]352 = \frac{r/2(18349)}{1-(1+r/12)^{-60}}[/tex]
⇒ [tex]1-(1+r/12)^{-60} = \frac{r/2(18349)}{352}[/tex]
⇒ [tex]1-(1+r/12)^{-60} = \frac{52.1278409091 r}{2}[/tex]
⇒ [tex]1-(1+r/12)^{-60} = 26.0639204545 r[/tex]
⇒ [tex]1-(1+r/12)^{-60} - 26.0639204545 r =0[/tex]
⇒ r = 0.0568 = 5.68 % ≈ 5.7%
Since, 5.7% is near to 5.9%.
Thus, the correct answer is C.
Answer: c. 5.9%
Step-by-step explanation:
Given: Present value of loan PV = [tex]21,349 - 3,000 = 18,349[/tex]
The monthly payment M = 352
Total number of periods=[tex]n = 12\times 5 = 60[/tex]
Let the APR be 'i'.
Now, the formula to find the monthly payment is given by ;-
[tex]M=\frac{\frac{r}{2}PV}{1-(1+\frac{r}{12})^{-n}}\\\\\Rightarrow1-(1+\frac{r}{12})^{-n}=\frac{\frac{r}{2}PV}{M}\\\\\Rightarrow1-(1+\frac{r}{2})^{-60}=\frac{(r/12)18349}{342}\\\\\Rightarrow1-(1+\frac{r}{12})^{-60}-0.2639204545r=0[/tex]
By using calculator, we get
[tex]r=0.568\approx0.59[/tex]
In percent, r= 5.9%