Respuesta :

Answer:

[tex]f=\frac{3}{5}[/tex]

Step-by-step explanation:

[tex]-2(4f+5)=-7+2f-9[/tex]

First, use PEMDAS to distribute the -2 to the parenthesis.

[tex]-8f -10 = -7+2f -9[/tex]

Combine like terms on the right side.

[tex]-8f - 10 = -16+2f[/tex]

Now, you may either subtract the f's or the constants. I'll subtract the constants first, meaning I will add 10 to both sides.

[tex]-8f = -6 + 2f[/tex]

Now subtract the 2f from both sides.

[tex]-10f = -6[/tex]

Divide both sides by 10.

[tex]f = \frac{-6}{-10}[/tex]

Simplify.

[tex]f = \frac{3}{5}[/tex]

Answer:

The value of f:

  • [tex]f=-1[/tex]

Step-by-step explanation:

Given the expression

[tex]-2\left(-4f+5\right)=-7+2f-9[/tex]

Group like terms

[tex]-2\left(-4f+5\right)=2f-7-9[/tex]

Subtract the numbers: -7-9=-16

[tex]-2\left(-4f+5\right)=2f-16[/tex]

Expand:  -2(-4f + 5) = 8f - 10

[tex]8f-10=2f-16[/tex]

Add 10 to both sides

[tex]8f-10+10=2f-16+10[/tex]

Simplify

[tex]8f=2f-6[/tex]

Subtract 2f from both sides

[tex]8f-2f=2f-6-2f[/tex]

Simplify

[tex]6f=-6[/tex]

Divide both sides by 6

[tex]\frac{6f}{6}=\frac{-6}{6}[/tex]

Simplify

[tex]f=-1[/tex]

Therefore, the value of f:

  • [tex]f=-1[/tex]