Respuesta :
Answer:
[tex]f=\frac{3}{5}[/tex]
Step-by-step explanation:
[tex]-2(4f+5)=-7+2f-9[/tex]
First, use PEMDAS to distribute the -2 to the parenthesis.
[tex]-8f -10 = -7+2f -9[/tex]
Combine like terms on the right side.
[tex]-8f - 10 = -16+2f[/tex]
Now, you may either subtract the f's or the constants. I'll subtract the constants first, meaning I will add 10 to both sides.
[tex]-8f = -6 + 2f[/tex]
Now subtract the 2f from both sides.
[tex]-10f = -6[/tex]
Divide both sides by 10.
[tex]f = \frac{-6}{-10}[/tex]
Simplify.
[tex]f = \frac{3}{5}[/tex]
Answer:
The value of f:
- [tex]f=-1[/tex]
Step-by-step explanation:
Given the expression
[tex]-2\left(-4f+5\right)=-7+2f-9[/tex]
Group like terms
[tex]-2\left(-4f+5\right)=2f-7-9[/tex]
Subtract the numbers: -7-9=-16
[tex]-2\left(-4f+5\right)=2f-16[/tex]
Expand: -2(-4f + 5) = 8f - 10
[tex]8f-10=2f-16[/tex]
Add 10 to both sides
[tex]8f-10+10=2f-16+10[/tex]
Simplify
[tex]8f=2f-6[/tex]
Subtract 2f from both sides
[tex]8f-2f=2f-6-2f[/tex]
Simplify
[tex]6f=-6[/tex]
Divide both sides by 6
[tex]\frac{6f}{6}=\frac{-6}{6}[/tex]
Simplify
[tex]f=-1[/tex]
Therefore, the value of f:
- [tex]f=-1[/tex]