Answer:
Please check the explanation.
Step-by-step explanation:
Determining the first equivalent expression:
Given the expression
[tex]-4y-16[/tex]
Rewrite 16 as 4 · 4
[tex]\:-4y\:-\:16=-4y-4\cdot \:\:4[/tex]
Taking common factor -4
[tex]=-4\left(y+4\right)[/tex]
Therefore,
[tex]\:-4y\:-\:16=-4\left(y+4\right)[/tex]
Determining the first equivalent expression:
Given the expression
[tex]-4y-16[/tex]
Rewriting -4y - 4y as -1 · 4y - 1 · 16
[tex]\:-4y\:-\:16=-1\:\cdot \:4y\:-\:1\:\cdot \:16[/tex]
Taking common factor -1
[tex]=-1\left(4y+16\right)[/tex]
Therefore,
[tex]\:-4y\:-\:16=-1\left(4y+16\right)[/tex]