Write the complex number in the form a + bi. 6(cos 330° + i sin 330°) -3square root of three - 3i -3square root of three + 3i 3square root of three + 3i 3square root of three - 3i

Respuesta :

Answer:

The complex number in rectangular form is [tex]z = 3\sqrt{3}-i\,3[/tex].

Step-by-step explanation:

Let be a complex number in polar form, that is: [tex]z = r\cdot (\cos \theta + i\,\sin \theta)[/tex]. The equivalent expression in rectangular form is defined by [tex]z = a+i\,b[/tex], where:

[tex]a = r\cdot \cos \theta[/tex] (1)

[tex]b = r\cdot \sin \theta[/tex] (2)

Where:

[tex]r[/tex] - Magnitude.

[tex]\theta[/tex] - Direction, measured in sexagesimal degrees.

If we know that [tex]r = 6[/tex] and [tex]\theta = 330^{\circ}[/tex], then complex number in rectangular form is:

[tex]a = 6\cdot \cos 330^{\circ}[/tex]

[tex]a = 3\sqrt{3}[/tex]

[tex]b = 6\cdot \sin 330^{\circ}[/tex]

[tex]b = -3[/tex]

The complex number in rectangular form is [tex]z = 3\sqrt{3}-i\,3[/tex].