Cumulative probability is a random variable determined by adding the probability density functions altogether, and its calculation can be defined as follows:
Given:
[tex]\to f(x)= \sqrt{x^2-1} \\\\\to g(x) = \sqrt{x^2+1}[/tex]
Find:
[tex]\to f(g(x))[/tex] and [tex]g(f(x))[/tex]
[tex]\to f(g(x))[/tex]
[tex]\to f(\sqrt{x^2+1})\\\\\to \sqrt{\sqrt{(x^2-1)+1}} \\\\\to \sqrt{\sqrt{x^2-1+1}} \\\\\to \sqrt{\sqrt{x^2}} \\\\\to \sqrt{x}} \\\\[/tex]
[tex]\to g(f(x))\\\\\to g(\sqrt{x^2-1})\\\\\to \sqrt{\sqrt{(x^2+1)-1}} \\\\\to \sqrt{\sqrt{x^2+1-1}} \\\\\to \sqrt{\sqrt{x^2}} \\\\\to \sqrt{x} \\\\[/tex]
Find out more about the cumulative function here:
brainly.com/question/15353924