A 1.00 kg particle has the xy coordinates (-1.20 m, 0.500 m) and a 4.50 kg particle has the xy coordinates (0.600 m, -0.750 m). Both lie on a horizontal plane. At what (a) x and (b) y coordinates must you place a 4.00 kg particle such that the center of mass of the three-particle system has the coordinates (-0.500 m, -0.700 m)

Respuesta :

Answer:

a) The x coordinate of the third mass is -1.562 meters.

b) The y coordinate of the third mass is -0.944 meters.

Explanation:

The center of mass of a system of particles ([tex]\vec r_{cm}[/tex]), measured in meters, is defined by this weighted average:

[tex]\vec r_{cm} = \frac{\Sigma_{i=1}^{n}\,m_{i}\cdot \vec r_{i}}{\Sigma_{i=1}^{n}\,m_{i}}[/tex] (1)

Where:

[tex]m_{i}[/tex] - Mass of the i-th particle, measured in kilograms.

[tex]\vec r_{i}[/tex] - Location of the i-th particle with respect to origin, measured in meters.

If we know that [tex]\vec r_{cm} = (-0.500\,m,-0.700\,m)[/tex], [tex]m_{1} = 1\,kg[/tex], [tex]\vec r_{1} = (-1.20\,m, 0.500\,m)[/tex], [tex]m_{2} = 4.50\,kg[/tex], [tex]\vec r_{2} = (0.600\,m, -0.750\,m)[/tex] and [tex]m_{3} = 4\,kg[/tex], then the coordinates of the third particle are:

[tex](-0.500\,m, -0.700\,m) = \frac{(1\,kg)\cdot (-1.20\,m,0.500\,m)+(4.50\,kg)\cdot (0.600\,m,-0.750\,m)+(4\,kg)\cdot \vec r_{3}}{1\,kg+4.50\,kg+4\,kg}[/tex]

[tex](-4.75\,kg\cdot m, -6.65\,kg\cdot m) = (-1.20\,kg\cdot m, 0.500\,kg\cdot m) + (2.7\,kg\cdot m, -3.375\,kg\cdot m) +(4\cdot x_{3},4\cdot y_{3})[/tex]

[tex](4\cdot x_{3}, 4\cdot y_{3}) = (-6.25\,kg\cdot m,-3.775\,kg\cdot m)[/tex]

[tex](x_{3},y_{3}) = (-1.562\,m,-0.944\,m)[/tex]

a) The x coordinate of the third mass is -1.562 meters.

b) The y coordinate of the third mass is -0.944 meters.