Respuesta :

I hope this helps you 1.x^2-8x-3=0 disctirminant =(-8)^2-4.1. (-3) disctirminant =64+12 disctirminant =76 x1,2= -b(+,-)square root of disctirminant /2a x1=-(-8)+square root of 76/2.1 x1=8+square root of 76/2 x2=8-square root of 76/2

Answer:

[tex]x-4=\sqrt{19}\Rightarrow x= 4+\sqrt{19}\\\\\ x-4=-\sqrt{19}\Rightarrow x= 4-\sqrt{19}[/tex]

 is the solution set for the given equation

Step-by-step explanation:

Given : Equation [tex]x^2-8x=3[/tex]      

We have to find the solution set for the given equation using   completing the square method.

Consider  the given equation [tex]x^2-8x=3[/tex]

Write the given equation in form of [tex]x^2+2ax+a^2=\left(x+a\right)^2[/tex]

Comparing , we have,

x = x

2ax = -8x

a = - 4

Adding [tex]a^2=16[/tex] both side, we have,

[tex]x^2-8x+\left(-4\right)^2=3+\left(-4\right)^2[/tex]

Simplify, we have,

[tex]\left(x-4\right)^2=19[/tex]

[tex]\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=\sqrt{a},\:-\sqrt{a}[/tex]

thus,

[tex](x-4)=\pm\sqrt{19}[/tex]

Therefore,

 [tex]x-4=\sqrt{19}\Rightarrow x= 4+\sqrt{19}\\\\\ x-4=-\sqrt{19}\Rightarrow x= 4-\sqrt{19}[/tex]

is the solution set for the given equation