Suppose you heat a metal object with a mass of 31.7 g to 96.5 oC and transfer it to a calorimeter containing 100.0 g of water at 17.3 oC. The water and metal reach a final temperature of 24.6 oC. What is the specific heat of the metal in J/g-oC?

Respuesta :

Answer: The specific heat of the metal in [tex]1.34J/g^0C[/tex]

Explanation:

[tex]Q_{absorbed}=Q_{released}[/tex]

As we know that,  

[tex]Q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})[/tex]

[tex]m_1\times c\times (T_{final}-T_1)=-[m_2\times c\times (T_{final}-T_2)][/tex]      

where,

[tex]m_1[/tex] = mass of metal = 31.7 g

[tex]m_2[/tex] = mass of water = 100.0 g

[tex]T_{final}[/tex] = final temperature = [tex]24.6^oC[/tex]

[tex]T_1[/tex] = temperature of metal = [tex]96.5^oC[/tex]

[tex]T_2[/tex] = temperature of water = [tex]17.3^oC[/tex]

[tex]c_1[/tex] = specific heat of metal= ?

[tex]c_2[/tex] = specific heat of water =  [tex]4.184J/g^0C[/tex]

Now put all the given values in equation (1), we get

[tex]m_1\times c_1\times (T_{final}-T_1)=-[m_2\times c_2\times (T_{final}-T_2)][/tex]

[tex]-(31.7\times c_1\times (24.6-96.5)^0C)=(100.0\times 4.184\times (24.6-17.3)][/tex]

[tex]c_1=1.34J/g^0C[/tex]

Therefore, the specific heat of the metal in [tex]1.34J/g^0C[/tex]