Answer:
24 ; Tstat > Tcritical ; 0.052 ; Fail to eject the Null
Step-by-step explanation:
Claiborne model:
$4.7 $3.8 $6.7 $3.8 $3.9 $4.2 $4.0 $4.0 $4.8 $3.1 $3.1 $5.5 $3.4 $6.1 $4.9
Sample size, n1 = 15
Using calculator :
Mean, m1 = 4.4
Standard deviation, s1 = 1.056
Klein model:
$4.0 $3.8 $3.6 $2.5 $4.9 $5.2 $5.9 $4.9 $4.4 $3.6 $5.1 $4.7
Sample size, n = 12
Mean, m2 = 4.38
Standard deviation (s) = 0.923
To obtain the degree of freedom for unequal variances test, use the Relation :
Degree of freedom (DF) = (s1²/n1 + s2²/n2)² / { [ (s1² / n1)² / (n1 - 1) ] + [ (s2² / n2)² / (n2 - 1) ] }
(1.056^2/15 + 0.923^2/12)^2 / {[(1.056^2/15)^2 / (15 - 1)] + [(0.923^2/12)^2 / (12 - 1)]}
0.0211226 / (0.0003947 + 0.0004581)
= 24.768527
df = 24 rounded down to the nearest whole number.
Decision region :
α = 1-0.95 = 0.05
Tdf, 0.05 = 1.711
Tcritical = 1.711
Reject Null, if Tstat > Tcritical
The t - test statistic :
(m1 - m2) / (s1²/n1 + s2²/n2)
(4.4 - 4.38) / sqrt(1.056^2 / 15 + 0.923^2 / 12)
0.02 / 0.3812301
= 0.0524617
= 0.052
Since, Tstat < Tcritical, we fail to reject the Null. It is not reasonable to conclude that Claiborne model earns more.