Answer:
[tex] x = 6\sqrt{2}[/tex]
Step-by-step explanation:
Reference angle = 45°
Adjacent side = 6
Hypotenuse = x
Applying trigonometric ratio, we have:
[tex] cos(45) = \frac{6}{x} [/tex]
Multiply both sides by x
[tex] x*cos(45) = 6 [/tex]
Divide both sides by cos(45)
[tex] x = \frac{6}{cos(45)} [/tex]
[tex] x = \frac{6}{\frac{\sqrt{2}}{2} [/tex] (cos 45 = √2/2)
[tex] x = \frac{6}*{\frac{2}{\sqrt{2}} [/tex]
[tex] x = \frac{12}{\sqrt{2}} [/tex]
Rationalize
[tex] x = \frac{12*\sqrt{2}}{\sqrt{2}*\sqrt{2} [/tex]
[tex] x = \frac{12*\sqrt{2}}{2} [/tex]
[tex] x = \frac{6*\sqrt{2}}{1} [/tex]
[tex] x = 6\sqrt{2}[/tex]