Respuesta :

Answer:

[tex] x = 6\sqrt{2}[/tex]

Step-by-step explanation:

Reference angle = 45°

Adjacent side = 6

Hypotenuse = x

Applying trigonometric ratio, we have:

[tex] cos(45) = \frac{6}{x} [/tex]

Multiply both sides by x

[tex] x*cos(45) = 6 [/tex]

Divide both sides by cos(45)

[tex] x = \frac{6}{cos(45)} [/tex]

[tex] x = \frac{6}{\frac{\sqrt{2}}{2} [/tex] (cos 45 = √2/2)

[tex] x = \frac{6}*{\frac{2}{\sqrt{2}} [/tex]

[tex] x = \frac{12}{\sqrt{2}} [/tex]

Rationalize

[tex] x = \frac{12*\sqrt{2}}{\sqrt{2}*\sqrt{2} [/tex]

[tex] x = \frac{12*\sqrt{2}}{2} [/tex]

[tex] x = \frac{6*\sqrt{2}}{1} [/tex]

[tex] x = 6\sqrt{2}[/tex]