Respuesta :

Answer:

[tex]10\, {\rm Fe}\rm SO_4 + 2\, \rm K {Mn} O_4 + 8\, H_2SO_4\\ \to 5\, {Fe} (SO_4)_3 + K_2SO_4 + 2\, {Mn}SO_4 + 8\, H_2O[/tex].

Explanation:

Identify the elements with oxidation state changes:

Oxidation states of iron, [tex]\rm Fe[/tex]:

  • [tex]+2[/tex] in [tex]\rm FeSO_4[/tex] among the reactants.
  • [tex]+3[/tex] in [tex]\rm Fe_2(SO_4)_3[/tex] among the products.
  • Change to the oxidation state: [tex]+1[/tex] (oxidation) for each [tex]\rm Fe[/tex] atom.

Oxidation state of manganese, [tex]\rm Mn[/tex]:

  • [tex]+7[/tex] in [tex]\rm KMnO_4[/tex] among the reactants.
  • [tex]+2[/tex] in [tex]\rm MnSO_4[/tex] among the products.
  • Change to the oxidation state: [tex](-5)[/tex] (reduction) for each [tex]\rm Mn[/tex] atom.

The change in the oxidation state of [tex]\rm Mn[/tex] is five times the opposite of the change to the oxidation state of [tex]\rm Fe[/tex]. If there are one mole of [tex]\rm Mn\![/tex] atoms in each mole of this reaction, there would be five times as many [tex]\rm Fe\![/tex] atoms per mole reaction. In other words:

[tex]\displaystyle 5\, \overset{+2}{\rm Fe}\rm SO_4 + 1\, \rm K \overset{+7}{Mn} O_4 + ?\, H_2SO_4\\ \to \frac{5}{2}\, \overset{+3}{Fe} (SO_4)_3 + ?\, K_2SO_4 + 1\, \overset{+2}{Mn}SO_4 + ?\, H_2O[/tex].

(Notice that each mole of this reaction would include five times as many [tex]\rm Fe[/tex] atoms as [tex]\rm Mn[/tex] atoms.)

Multiply the coefficients by [tex]2[/tex] to eliminate the fraction:

[tex]\displaystyle 10\, {\rm Fe}\rm SO_4 + 2\, \rm K {Mn} O_4 + ?\, H_2SO_4\\ \to 5\, {Fe} (SO_4)_3 + ?\, K_2SO_4 + 2\, {Mn}SO_4 + ?\, H_2O[/tex].

Find the unknown coefficients using the conservation of atoms.

Reactants:

  • [tex]2[/tex] potassium [tex]\rm K[/tex] atoms in two [tex]\rm K_2SO_4[/tex] formula units.

Therefore, among the products:

  • [tex]2[/tex] potassium [tex]\rm K[/tex] atoms in one [tex]\rm K_2SO_4[/tex] formula unit.

[tex]\displaystyle 10\, {\rm Fe}\rm SO_4 + 2\, \rm K {Mn} O_4 + ?\, H_2SO_4\\ \to 5\, {Fe} (SO_4)_3 + {1}\, K_2SO_4 + 2\, {Mn}SO_4 + ?\, H_2O[/tex].

Products:

  • [tex]5 \times 3 + 2 + 1 = 18[/tex] sulfur [tex]\rm S[/tex] atoms in five [tex]\rm Fe_2(SO_4)_3[/tex] formula units, two [tex]\rm K_2 SO_4[/tex] formula units, and one [tex]\rm MnSO_4[/tex] formula unit.

Reactants:

  • There are already ten [tex]\rm S[/tex] atoms in that ten [tex]\rm Fe(SO_4)_2[/tex] formula units. The other [tex]18 - 10 = 8[/tex] formula units would correspond to eight [tex]\rm H_2SO_4[/tex] molecules among the reactants of this reaction.

[tex]\displaystyle 10\, {\rm Fe}\rm SO_4 + 2\, \rm K {Mn} O_4 + 8\, H_2SO_4\\ \to 5\, {Fe} (SO_4)_3 + {1}\, K_2SO_4 + 2\, {Mn}SO_4 + ?\, H_2O[/tex].

Products:

  • There are [tex]8 \times 2 = 16[/tex] hydrogen [tex]\rm H[/tex] atoms in that eight [tex]\rm H_2SO_4[/tex] molecules.

Therefore, among the products:

  • There would be [tex]16 / 2 = 8[/tex] molecules of [tex]\rm H_2O[/tex], with two [tex]\rm H[/tex] atoms in each [tex]\rm H_2O\![/tex] molecule.

[tex]\displaystyle 10\, {\rm Fe}\rm SO_4 + 2\, \rm K {Mn} O_4 + 8\, H_2SO_4\\ \to 5\, {Fe} (SO_4)_3 + {1}\, K_2SO_4 + 2\, {Mn}SO_4 + 8\, H_2O[/tex].