contestada

Part B
Enter the numerical coordinates of the vertices of quadrilateral ABCD in the table. (Point A has been done for you.) Then predict the numerical
coordinates of the vertices of quadrilateral A'B'C'D' as the figure translates four different ways: 7 units up, 1 unit down, 4 units to the right, and 3
units to the left.

Part B Enter the numerical coordinates of the vertices of quadrilateral ABCD in the table Point A has been done for you Then predict the numerical coordinates o class=

Respuesta :

9514 1404 393

Answer:

  up: (-3, 5); down: (-3, -3); right: (1, -2); left: (-6, -2)

Step-by-step explanation:

As you know, the coordinates of a given point tell you the distance ...

  (right, up)

So, a displacement 7 units up adds 7 to the second coordinate value:

  A(-3, -2) ⇒ A'(-3, -2+7) = A'(-3, 5) . . . . 7 units up

Likewise, 1 unit down subtracts 1 unit from the second coordinate value:

  A(-3, -2) ⇒ A'(-3, -3) . . . . 1 unit down

__

Similarly, left-right changes affect only the first coordinate. Displacements right are added; displacements left are subtracted.

  A(-3, -2) ⇒ A'(-3+4, -2) = A'(1, -2) . . . . 4 units right

  A(-3, -2) ⇒ A'(-6, -2) . . . . 3 units left