Answer:
The answer is "effective stress at point B is 7382 ksi "
Explanation:
Calculating the value of Compressive Axial Stress:
[tex]\to \sigma y =\frac{F}{A} = \frac{4 F}{( p d ^2 )} = \frac{(4 x ( - 40000 \ lbf))}{[ p \times (1 \ in)^2 ]} = - 50.9 \ ksi \\[/tex]
Calculating Shear Transverse:
[tex]\to \frac{4v}{ 3 A} = \frac{4 (75 \ lbf + 25 \ lbf)}{ \frac{3 ( lni)^2}{4}}[/tex]
[tex]= \frac{4 (100 \ lbf)}{ \frac{3 ( lni)^2}{4}} \\\\ = \frac{400 \ lbf)}{ \frac{3 ( lni)^2}{4}} \\\\= 0.17 \ ksi[/tex]
[tex]= R \times 200 \ in - P \times 100 \ in = 12500 \ lbf \times\ in[/tex]
[tex]\to \sigma' =[ s y^2 +3( t \times y^2 + t yz^2 )] \times \frac{1}{2}\\\\[/tex]
[tex]= [ (-50.9)^2 +3((63.7)^2 +(0.17)^2 )] \times \frac{1}{2}\\\\=[2590.81+ 3(4057.69)+0.0289]\times \frac{1}{2}\\\\=[2590.81+12,173.07+0.0289] \times \frac{1}{2}\\\\=14763.9089\times \frac{1}{2}\\\\ = 7381.95445 \ ksi\\\\ = 7382 \ ksi[/tex]