Answer:
[tex]39\ m[/tex]
Step-by-step explanation:
[tex]We\ are\ given:\\Perimeter\ of\ Cole's\ backyard=104\ meters\\Now,\\Let\ the\ constant\ of\ proportionality\ between\ the\ length\ and\ the\ width\ of\\ Cole's\ backyard\ be\ x.\\Hence,\\Length\ of\ Cole's\ backyard=6x\\Breadth\ of\ Cole's\ backyard=2x\\Hence,\\As\ we\ know\ that,\\Perimeter\ of\ a\ rectangle=2(l+w)\\Hence,\\Here,\\Perimeter\ of\ Cole's\ backyard=2(6x+2x)=2(8x)=16x\\Hence,\\As\ the\ perimeter\ of\ Cole's\ backyard=104\ m,\\104=16x\\x=\frac{104}{16}=6.5\\Hence,\\[/tex][tex]Length\ of\ Cole's\ backyard=6x=6*6.5=39\ m\\Width\ of\ Cole's\ backyard=2x=2*6.5=13\ m\\Here,\\We\ are\ asked\ Length,\\Hence,\\Length\ of\ Cole's\ backyard=39\ m[/tex]