Answer:
The sequence converges
Step-by-step explanation:
Given the sequence Un = 10n-6/2n-3
To determine whether the sequence converges or diverges, we will have to take the limit of the sequence as n goes large.
[tex]\lim_{n \to \infty} \left\{\frac{10n-6}{2n-3}\right}\\[/tex]
Divide through by n
[tex]= \lim_{n \to \infty} \left\{\frac{10n/n-6/n}{2n/n-3/n}\right}\\= \lim_{n \to \infty} \left\{\frac{10-6/n}{2-3/n}\right}\\= \left\{\frac{10-6/\infty}{2-3/\infty}\right}\\= \frac{10-0}{2-0}\\= 10/2\\= 5[/tex]
Since the limit of the sequence gives a finite value, hence the sequence converges