Answer:
[tex]a.\ Probability = 0.426[/tex]
[tex]b.\ Probability = 0.574[/tex]
Step-by-step explanation:
Given
[tex]Total\ Families = 1000[/tex]
Number of Girls : 0 ----> 1 -----> 2 ------->3
Number of Families: 112 -> 314 --> 382 ---> 192
Solving (a): At most one girl
From the table, the number of families with at most one girl is: 112 + 314
i.e.
Number of Girls : 0 ----> 1
Number of Families: 112 -> 314
So, we have:
[tex]At\ Most\ One\ Girl = 112 + 314[/tex]
[tex]At\ Most\ One\ Girl = 426[/tex]
The probability is then calculated as:
[tex]Probability = \frac{At\ Most\ One\ Girl}{Total}[/tex]
[tex]Probability = \frac{426}{1000}[/tex]
[tex]Probability = 0.426[/tex]
Solving (b): More girls
From the table, the number of families with more girl is: 382 + 192
i.e.
Number of Girls : -----> 2 ------->3
Number of Families: --> 382 ---> 192
So, we have:
[tex]More\ Girls = 382 + 192[/tex]
[tex]More\ Girls = 574[/tex]
The probability is then calculated as:
[tex]Probability = \frac{More\ Girls}{Total}[/tex]
[tex]Probability = \frac{574}{1000}[/tex]
[tex]Probability = 0.574[/tex]