Respuesta :

Answer:

 [tex]\int\limits {\frac{V-1}{1+2V+V^{2} } } \, dv[/tex]    [tex]= log V + (\frac{2 }{1+v} )+C[/tex]

Step-by-step explanation:

Step(i):-

Given  

                [tex]\int\limits {\frac{V-1}{1+2V+V^{2} } } \, dv[/tex]

           =   [tex]\int\limits {\frac{V-2+1}{1+2V+V^{2} } } \, dv[/tex]

         [tex]= \int\limits {\frac{V+1}{(1+V)^{2} } } \, dv+\int\limits {\frac{-2}{(1+V)^{2} } } \, dv[/tex]

       = [tex]= \int\limits {\frac{1}{(1+V) } } \, dv+\int\limits {\frac{-2}{(1+V)^{2} } } \, dv[/tex]

Step(ii):-

By using integration formula

[tex]\int\limits {\frac{1}{x} } \, dx =logx +C[/tex]

[tex]\int\limits {x^{n} } \, dx = \frac{x^{n+1} }{n+1} +C[/tex]

      [tex]= \int\limits {\frac{1}{(1+V) } } \, dv+\int\limits {\frac{-2}{(1+V)^{2} } } \, dv\\= log V + (\frac{-2(1+v)^{-2+1} }{-2+1} )+C[/tex]

   [tex]= log V + (\frac{-2(1+v)^{-1} }{-1} )+C[/tex]

  [tex]= log V + (\frac{2 }{1+v} )+C[/tex]