Respuesta :

Answer:

x = 5.2

Step-by-step explanation:

Measure of interior angle of a regular polygon = [tex]\frac{(n-2)\times180}{n}[/tex]

Here n = number of sides of the polygon

Interior angle of a regular pentagon = [tex]\frac{(5-2)\times180}{5}[/tex]

                                                            = 108°

By applying cosine rule in ΔABK,

(BK)² = (AK)² + (AB)² - 2(AK)(AB)cos(108)°

(x + 3)² = 4² + 6² - 2(4)(6)cos(108)°

x² + 6x + 9 = 16 + 36 - (-14.83)

x² + 6x = 57.83

x² + 6x - 57.83 = 0

x = [tex]\frac{-6\pm \sqrt{6^2-4(1)(-57.83)}}{2(1)}[/tex]

x = [tex]\frac{-6\pm16.35}{2}[/tex]

x ≈ -11.2, 5.2

Since, x can't be negative,

x = 5.2 will be the answer.