Answer:
The zeros of f(x) are:
[tex]x=5,\:x=4,\:x=2[/tex]
Step-by-step explanation:
Given the expression
[tex]f\left(x\right)\:=\:\left(x\:-\:5\right)\left(x\:-\:4\right)\left(x\:-\:2\right)[/tex]
substituting f(x) = 0 to determine zeros of f(x)
[tex]0\:=\:\left(x\:-\:5\right)\left(x\:-\:4\right)\left(x\:-\:2\right)[/tex]
Using the zero factor principle
if ab=0, then a=0 or b=0 (or both a=0 and b=0)
[tex]x-5=0\quad \mathrm{or}\quad \:x-4=0\quad \mathrm{or}\quad \:x-2=0[/tex]
solving x-5=0
[tex]x-5=0[/tex]
adding 5 to both sides
[tex]x-5+5 = 0+5[/tex]
[tex]x = 5[/tex]
solving x-4=0
[tex]x-4=0[/tex]
adding 4 to both sides
[tex]x-4+4 = 0+4[/tex]
[tex]x = 4[/tex]
solving x-2=0
[tex]x-2=0[/tex]
adding 2 to both sides
[tex]x-2+2 = 0+2[/tex]
[tex]x = 2[/tex]
Therefore, the zeros of f(x) are:
[tex]x=5,\:x=4,\:x=2[/tex]