The area of Mr. Rogers’ field is 3 ⅓ square miles. If the width of the field is ⅔ of a mile, what is the length?

Respuesta :

Answer:

Length of Mr. Roger's field = 5 miles

Step-by-step explanation:

Given that:

Area of Mr. Roger's field = [tex]3\frac{1}{3}=\frac{10}{3}[/tex] square miles

Width of Mr. Roger's field = [tex]\frac{2}{3}[/tex] of a mile

Let,

l be the length of Mr. Roger's field

Area of field = Length * Width

[tex]\frac{10}{3}=\frac{2}{3}l[/tex]

Multiplying both sides by 3/2

[tex]\frac{3}{2}*\frac{10}{3}=\frac{2}{3}l*\frac{3}{2}\\5 = l\\l = 5[/tex]

Hence,

Length of Mr. Roger's field = 5 miles