D(n) = \dfrac{5}{16} \left(2\right)^{n - 1}d(n)= 16 5 ​ (2) n−1 d, left parenthesis, n, right parenthesis, equals, start fraction, 5, divided by, 16, end fraction, left parenthesis, 2, right parenthesis, start superscript, n, minus, 1, end superscript What is the 5^\text{th}5 th 5, start superscript, start text, t, h, end text, end superscript term in the sequence?

Respuesta :

Answer:

d(5) = 5

Step-by-step explanation:

The nth term is given by :

[tex]d(n)=\dfrac{5}{16}\times 2^{n-1}[/tex] ...(1)

We need to find the 5th term of the above sequence. For this, put n = 5 in the above formula.

[tex]d(5)=\dfrac{5}{16}\times 2^{5-1}\\\\=\dfrac{5}{16}\times 2^4\\\\=\dfrac{5}{16}\times 16\\\\=5[/tex]

So, the 5th term in the above sequence is 5.

Answer:

5

Step-by-step explanation