Step-by-step explanation:
P(x)
= (x - 2)Q¹(x) + 5
= (x - 2)[(x² + 2x + 4)Q²(x) + 2x - 3] + 5.
Since x³ - 8 = (x - 2)(x² + 2x + 4),
(x - 2)[(x² + 2x + 4)Q²(x) + 2x - 3] + 5
= (x - 2)(x² + 2x + 4)Q²(x) + (x - 2)(2x - 3) + 5
= (x³ - 8)Q²(x) + (2x² - 7x + 11).
Hence when P(x) is divided by (x³ - 8),
the remainder is 2x² - 7x + 11.