Answer:
A. [tex] {x}^{3} - x - \frac{6}{2x + 3}[/tex]
Step-by-step explanation:
[tex] \frac{2 {x}^{4} + 3 {x}^{3} - 2 {x}^{2} - 3x - 6}{2x + 3} \\ \\ = \frac{(2 {x}^{4} + 3 {x}^{3} ) - (2 {x}^{2} + 3x) - 6}{2x + 3} \\ \\ = \frac{ {x}^{3} (2 {x} + 3 ) - x(2 {x} + 3) - 6}{2x + 3} \\ \\ = \frac{ {x}^{3} (2x + 3)}{2x + 3} - \frac{x(2x + 3)}{2x + 3} - \frac{6}{2x + 3} \\ \\ \purple { \bold{= {x}^{3} - x - \frac{6}{2x + 3} }}[/tex]