Determine any data values that are missing from the table, assuming that the data represent a linear function.

X Ix ly |-12 17 -10 19 -8 23

a. Missing x:-6 Missing y:22
b. Missing x:-7 Missing y:22
c. Missing x:-7 Missing y:20
d. Missing x:-6 Missing y:21

Please select the best answer from the choices provided Save and Exit Next Submit Mark this and return​

Determine any data values that are missing from the table assuming that the data represent a linear function X Ix ly 12 17 10 19 8 23 a Missing x6 Missing y22 b class=

Respuesta :

Answer:

we conclude that:

  • The value of missing x = 6
  • The value of missing y = 21

Step-by-step explanation:

Given that the table represents a  linear function, so the function is a straight line.

Taking two points

  • (-12, 17)
  • (-10, 19)

Finding the slope between (-12, 17) and (-10, 19)

[tex]\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(-12,\:17\right),\:\left(x_2,\:y_2\right)=\left(-10,\:19\right)[/tex]

[tex]m=\frac{19-17}{-10-\left(-12\right)}[/tex]

[tex]m=1[/tex]

Using the point-slope form to determine the linear equation

[tex]y-y_1=m\left(x-x_1\right)[/tex]

where m is the slope of the line and (x₁, y₁) is the point

substituting the values m = 1 and the point (-12, 17)

[tex]y-y_1=m\left(x-x_1\right)[/tex]

[tex]y - 17 = 1 (x - (-12)[/tex]

[tex]y - 17 = x+12[/tex]

[tex]y = x + 12+17[/tex]

[tex]y = x+29[/tex]

Thus, the equation of the linear equation is:

[tex]y = x+29[/tex]

Now substituting x = -8 in the equation

[tex]y = x+29[/tex]

[tex]y = -8+29[/tex]

[tex]y = 21[/tex]

Thus, the value of missing y = 21 when x = -8

Now substituting y = 23 in the equation

[tex]y = x+29[/tex]

[tex]23 = x+29[/tex]

[tex]x = 29 - 23[/tex]

[tex]x = 6[/tex]

Therefore, the value of missing x = 6 when y = 23

Hence, we conclude that:

  • The value of missing x = 6
  • The value of missing y = 21

Answer:

the answer is?

Step-by-step explanation: