Respuesta :

Answer:

(x-4,y+8)

Step-by-step explanation:

Given

[tex]Point = (x,y)[/tex]

Required

Translate

  • 4 units left
  • 8 units up

8 units up

The general rule for up translation is;

[tex]f'(x,y) = f(x,y+h)[/tex]

Where h is the unit translated up

In this case:

[tex]h = 8[/tex]

So, we have:

[tex]f'(x,y) = f(x,y+8)[/tex]

4 units left

The general rule for up translation is;

[tex]f'(x,y) = f(x-b,y)[/tex]

Where b is the unit translated left

In this case:

[tex]b = 4[/tex]

So, we have:

[tex]f"(x,y) = f(x -4,y+8)[/tex]

Hence, the rule of translation is: (x-4,y+8)