Respuesta :

Answer:

g(-3) = [tex]\frac{17}{4}[/tex]

g(2) = -3

g(5) = [tex]-\frac{7}{4}[/tex]

Step-by-step explanation:

Let us solve the question

∵ g(x) = [tex]-\frac{3}{4}[/tex] x + 2, x ≠ 2

→ That means we can use it for any value os x except 2

∵ g(x) = -3, x = 2

→ That means we will use it only if x = 2

We want to find g(-3)

x = -3 ⇒ ≠ 2

∴ We will use g(x) = [tex]-\frac{3}{4}[/tex] x + 2

→ Substitute x by -3

∵ g(-3) =  [tex]-\frac{3}{4}[/tex] (-3) + 2

∴ g(-3) =  [tex]\frac{9}{4}[/tex]  + 2

g(-3) = [tex]\frac{17}{4}[/tex]

We want to find g(2)

x = 2

∴ We will use g(x) = -3

→ This is a constant function which means g(2) equal to -3

g(2) = -3

We want to find g(5)

x = 5 ⇒ ≠ 2

∴ We will use g(x) = [tex]-\frac{3}{4}[/tex] x + 2

→ Substitute x by 5

∵ g(5) =  [tex]-\frac{3}{4}[/tex] (5) + 2

∴ g(5) =  [tex]-\frac{15}{4}[/tex]  + 2

g(5) = [tex]-\frac{7}{4}[/tex]