Answer:
g(-3) = [tex]\frac{17}{4}[/tex]
g(2) = -3
g(5) = [tex]-\frac{7}{4}[/tex]
Step-by-step explanation:
Let us solve the question
∵ g(x) = [tex]-\frac{3}{4}[/tex] x + 2, x ≠ 2
→ That means we can use it for any value os x except 2
∵ g(x) = -3, x = 2
→ That means we will use it only if x = 2
We want to find g(-3)
∵ x = -3 ⇒ ≠ 2
∴ We will use g(x) = [tex]-\frac{3}{4}[/tex] x + 2
→ Substitute x by -3
∵ g(-3) = [tex]-\frac{3}{4}[/tex] (-3) + 2
∴ g(-3) = [tex]\frac{9}{4}[/tex] + 2
∴ g(-3) = [tex]\frac{17}{4}[/tex]
We want to find g(2)
∵ x = 2
∴ We will use g(x) = -3
→ This is a constant function which means g(2) equal to -3
∴ g(2) = -3
We want to find g(5)
∵ x = 5 ⇒ ≠ 2
∴ We will use g(x) = [tex]-\frac{3}{4}[/tex] x + 2
→ Substitute x by 5
∵ g(5) = [tex]-\frac{3}{4}[/tex] (5) + 2
∴ g(5) = [tex]-\frac{15}{4}[/tex] + 2
∴ g(5) = [tex]-\frac{7}{4}[/tex]