Answer:
[tex]=\frac{2x^3+x^2-11x+14}{\left(x+4\right)\left(x+2\right)\left(x-2\right)}[/tex]
Step-by-step explanation:
Step 1: Factor [tex]x² + 2x - 8: (x - 2) (x + 4)[/tex]
[tex]=\frac{x}{x+4}+\frac{x-1}{x+2}+\frac{3}{\left(x-2\right)\left(x+4\right)}[/tex]
Step 2: Find the Least Common Multiplier of [tex]x + 4, x - 2, (x + 4), (x - 2)[/tex]
= [tex](x + 4) (x + 2) (x - 2)[/tex]
Step 3a: Conform the fractions based on the LCM (Least Common Multiplier)
= [tex]\frac{x\left(x+2\right)\left(x-2\right)}{\left(x+4\right)\left(x+2\right)\left(x-2\right)}+\frac{\left(x-1\right)\left(x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x+4\right)\left(x-2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+4\right)\left(x+2\right)}[/tex]
Step 3b: The denominators are equal, so combine the fractions.
[tex]=\frac{x\left(x+2\right)\left(x-2\right)+\left(x-1\right)\left(x+4\right)\left(x-2\right)+3\left(x+2\right)}{\left(x+4\right)\left(x+2\right)\left(x-2\right)}[/tex]
Step 4: Expand [tex]x(x + 2)(x - 2) +(x-1)(x+4)(x-2) + 3(x-2)[/tex]
[tex]=\frac{2x^3+x^2-11x+14}{\left(x+4\right)\left(x+2\right)\left(x-2\right)}[/tex]
Have a great day!