Respuesta :

Answer:

14

Step-by-step explanation:

The perimeter is the sum of the sides, so we have

2x+x+15+4x-7=57

= 7x+8

Subtracting 8 from both sides, we get

7x= 49

Dividing 7 from both sides, we get

x=7

Our sides are then 2x=14, x+15=22, and 4x-7=21. 14 is our answer

Answer:

The shortest length of the triangle is: 14

Hence, option B is correct.

Step-by-step explanation:

Given the triangle with the lengths

  • [tex]x+15[/tex]
  • [tex]4x-7[/tex]
  • [tex]2x[/tex]

Given that the perimeter of triangle = P = 57

We know that the perimeter of a triangle is the sum of the lengths of the sides of a triangle.

so

[tex]P = (x+15)+(4x-7)+(2x)[/tex]

substitute P = 57

[tex]57 = (x+15)+(4x-7)+(2x)[/tex]

switch sides

[tex]\left(x+15\right)+\left(4x-7\right)+\left(2x\right)=57[/tex]

[tex]x+15+4x-7+2x=57[/tex]

Group like terms

[tex]x+4x+2x+15-7=57[/tex]

Add similar elements

[tex]7x+15-7=57[/tex]

[tex]7x=49[/tex]

divide both sides by 7

[tex]\frac{7x}{7}=\frac{49}{7}[/tex]

simplify

[tex]x=7[/tex]

Now, measuring the lengths by substituting x = 7

  • [tex]x+15 = 7+15 = 22[/tex]
  • [tex]4x-7 = 4(7)-7 = 28 - 7 = 21[/tex]
  • [tex]2x = 2(7) = 14[/tex]

Therefore, the shortest length of the triangle is: 14

Hence, option B is correct.