Step-by-step explanation:
[tex](ii)\\24y=\boxed{2}\cdot\boxed{2}\cdot\boxed{2}\cdot3\cdot\boxed{y}\\16xy=\boxed{2}\cdot\boxed{2}\cdot\boxed{2}\cdot2\cdot\boxed{y}\\\\GCF(24x;\ 16xy)=\boxed{2}\cdot\boxed{2}\cdot\boxed{2}\cdot\boxed{y}=8y[/tex]
[tex](iii)\\14p^2=2\cdot\boxed{7}\cdot\boxed{p}\cdot p\\\\7pq=\boxed{7}\cdot\boxed{p}\cdot q\\\\28p=\boxed{7}\cdot2\cdot2\cdot\boxed{p}\\\\GCF(14p^2;\ 7pq;\ 28p)=\boxed{7}\cdot\boxed{p}=7p[/tex]
[tex](v)\\6a^3b^2c=\boxed{2}\cdot\boxed{3}\cdot\boxed{a}\cdot a\cdot a\cdot\boxed{b}\cdot b\cdot\boxed{c}\\\\24ab^3c^4=\boxed{2}\cdot2\cdot2\cdot\boxed{3}\cdot\boxed{a}\cdot\boxed{b}\cdot b\cdot b\cdot\boxed{c}\cdot c\cdot c\cdot c\\\\12abc=\boxed{2}\cdot 2\cdot\boxed{3}\cdot\boxed{a}\cdot\boxed{b}\cdot\boxed{c}\\\\GCF(6a^3b^2c;24ab^3c^4;\ 12abc)=\boxed{2}\cdot\boxed{3}\cdot\boxed{a}\cdot\boxed{b}\cdot\boxed{c}=6abc[/tex]
[tex](vi)\\16x^3=\boxed{2}\cdot\boxed{2}\cdot\boxed{2}\cdot2\cdot\boxed{x}\cdot\boxed{x}\cdot x\\\\-40x^2=-\boxed{2}\cdot\boxed{2}\cdot\boxed{2}\cdot5\cdot\boxed{x}\cdot\boxed{x}\\\\32x^4=\boxed{2}\cdot\boxed{2}\cdot\boxed{2}\cdot2\cdot2\cdot\boxed{x}\cdot\boxed{x}\cdot x\cdot x\\\\GCF(16x^3;\ -40x^2;\ 32x^4)=\boxed{2}\cdot\boxed{2}\cdot\boxed{2}\cdot\boxed{x}\cdot\boxed{x}=8x^2[/tex]