Answer:
A. [tex] x \leq -16[/tex]
B. b > 11
C. [tex] c \leq -13 [/tex]
D. [tex] x \geq -9[/tex]
Step-by-step explanation:
Given the following algebraic expression;
A. [tex] \frac {3x}{4} \leq 12 [/tex]
We would simplify the equation by multiplying all through by 4;
[tex] 4 * \frac {-3x}{4} \leq 12 * 4[/tex]
[tex] -3x \leq 48[/tex]
Divide both sides by -3;
[tex] x \leq -16[/tex]
B. 5b - 28 > 27
Rearranging the equation, we have;
5b > 27 + 28
5b > 55
Divide both sides by 5
b > 11
C. [tex] 13c \leq -169[/tex]
Divide both sides by 13
[tex] c \leq -13 [/tex]
D. [tex] 3x - 7 \geq 4x + 2[/tex]
Collecting like terms, we have;
[tex] 3x - 4x \geq 2 + 7[/tex]
[tex] -x \geq 9[/tex]
Divide both sides by -1
[tex] x \geq -9[/tex]