Respuesta :

Lanuel

Answer:

A. [tex] x \leq -16[/tex]  

B. b > 11

C. [tex] c \leq -13 [/tex]

D. [tex] x \geq -9[/tex]

Step-by-step explanation:

Given the following algebraic expression;

A. [tex] \frac {3x}{4} \leq 12 [/tex]

We would simplify the equation by multiplying all through by 4;

[tex] 4 * \frac {-3x}{4} \leq 12 * 4[/tex]

[tex] -3x \leq 48[/tex]

Divide both sides by -3;

[tex] x \leq -16[/tex]

B. 5b - 28 > 27

Rearranging the equation, we have;

5b > 27 + 28

5b > 55

Divide both sides by 5

b > 11

C. [tex] 13c \leq -169[/tex]

Divide both sides by 13

[tex] c \leq -13 [/tex]

D. [tex] 3x - 7 \geq 4x + 2[/tex]

Collecting like terms, we have;

[tex] 3x - 4x \geq 2 + 7[/tex]

[tex] -x \geq 9[/tex]

Divide both sides by -1

[tex] x \geq -9[/tex]