Respuesta :
Answer:
≈ 13.1 cm²
Step-by-step explanation:
The area (A) of the sector is calculated as
A = area of circle × fraction of circle
= πr² × [tex]\frac{60}{360}[/tex]
= π × 5² × [tex]\frac{1}{6}[/tex]
= 25π ÷ 6
≈ 13.1 cm² ( to 1 dec. place )
Answer:
area = 13.1 cm²
Step-by-step explanation:
area of sector formulae:
[tex] \frac{theta}{360} \times \pi {r}^{2} [/tex]
theta = 60°
radius = 5 cm
π = 22/7
substitute the values into the formulae
[tex] \frac{60}{360} \times \frac{22}{7} \times {5}^{2} [/tex]
[tex] \frac{1}{6} \times \frac{22}{7} \times 25[/tex]
[tex] \frac{1}{6} \times \frac{25 \times 22}{7} [/tex]
[tex] \frac{1}{6} \times \frac{550}{7} [/tex]
[tex] \frac{550 \times 1}{6 \times 7} [/tex]
[tex] \frac{550}{42} [/tex]
[tex]13.1 \: cm {}^{2} [/tex]