Respuesta :

[tex]\large\bold{\underline{\underline{To \: Find:-}}}[/tex]

[tex] \sf \left|\begin{array}{c c} sin20\degree & -cos20\degree \\ sin70\degree & cos70\degree \end{array}\right|=?[/tex]

[tex]\large\bold{\underline{\underline{Explanation:-}}}[/tex]

They are asking us to find the determinant

[tex]\boxed{\sf \left|\begin{array}{c c} a & b \\ c & d \end{array}\right| =ad-bc}[/tex]

Now using the above formula it becomes

[tex]\left|\begin{array}{c c} sin20\degree & -cos20\degree \\ sin70\degree & cos70\degree \end{array}\right| \: = sin20 \degree cos70 \degree - ( - cos20 \degree sin70 \degree) \: \\ \\ = sin20 \degree cos70 \degree + cos20 \degree sin70 \degree [/tex]

Now using the formula

[tex]\boxed{\sf sin(A+B)=sinAcosB+cosAsinB}[/tex]

it becomes

[tex] \longrightarrow \: sin(20 + 70) \\ \\ \longrightarrow \: sin(90 \degree) = 1[/tex]

★Therefore

[tex] \boxed{\sf \left|\begin{array}{c c} sin20\degree & -cos20\degree \\ sin70\degree & cos70\degree \end{array}\right|=1}[/tex]

━━━━━━━━━━━━━━━━━━━

★Extra information:-

What is a matrix?

☄It is a rectangular representation or array of numbers,symbols and many more functions

☄It is represented in rows and columns

━━━━━━━━━━━━━━━━━━━━━━━━━━