Answer:
[tex]P(-2<Z<2)=95\%[/tex]
Step-by-step explanation:
From question we are told that
Sample mean [tex]\=x= 47[/tex]
Standard deviation [tex]\sigma =7[/tex]
Generally the X -Normal is given as
[tex]Z=\frac{x-\=x}{\sigma}[/tex]
[tex]Z=\frac{x-47}{9}[/tex]
Analyzing the range
[tex]P(47<x<65) = P(0< z<2.00)[/tex]
[tex]P(47<x<65) = 95/2[/tex]
[tex]P(47<x<65) = 47.5\%[/tex]
Mathematically
[tex]Z_1 =\frac{47-47}{9} =0[/tex]
[tex]Z_2 =\frac{65-47}{9} =2[/tex]
Empirical rule shows that
[tex]P(-2<Z<2)=95\%[/tex]