Find the value of the variable.

In triangle ABC, AB¯¯¯¯¯¯¯¯=14, BC¯¯¯¯¯¯¯¯=27, AC¯¯¯¯¯¯¯¯=19, and ∡A=32°. In triangle FGH, FG¯¯¯¯¯¯¯¯=14, GH¯¯¯¯¯¯¯¯=19, FH¯¯¯¯¯¯¯¯=2y+5, and ∡G=32°.

Answer: ???

Respuesta :

Answer:

The variable, y is 11°

Step-by-step explanation:

The given parameters are;

in triangle ΔABC;          [tex]{}[/tex]              in triangle ΔFGH;

Segment [tex]\overline {AB}[/tex] = 14         [tex]{}[/tex]               Segment [tex]\overline {FG}[/tex] = 14

Segment [tex]\overline {BC}[/tex] = 27         [tex]{}[/tex]              Segment [tex]\overline {GH}[/tex] = 19

Segment [tex]\overline {AC}[/tex] = 19         [tex]{}[/tex]               Segment [tex]\overline {FH}[/tex] = 2·y + 5

∡A = 32°                       [tex]{}[/tex]                ∡G = 32°

∡A = ∠BAC which is the angle formed by segments [tex]\overline {AB}[/tex] = 14 and [tex]\overline {AC}[/tex] = 19

Therefore, segment [tex]\overline {BC}[/tex] = 27, is the segment opposite to ∡A = 32°

Similarly, ∡G = ∠FGH which is the angle formed by segments [tex]\overline {FG}[/tex] = 14 and [tex]\overline {GH}[/tex] = 19

Therefore, segment [tex]\overline {FH}[/tex] = 2·y + 5, is the segment opposite to ∡A = 32° and triangle ΔABC ≅ ΔFGH by Side-Angle-Side congruency rule which gives;

[tex]\overline {FH}[/tex] ≅ [tex]\overline {BC}[/tex] by Congruent Parts of Congruent Triangles are Congruent (CPCTC)

∴ [tex]\overline {FH}[/tex] = [tex]\overline {BC}[/tex] = 27° y definition of congruency

[tex]\overline {FH}[/tex] = 2·y + 5 = 27° by transitive property

∴ 2·y + 5 = 27°

2·y = 27° - 5° = 22°

y = 22°/2 = 11°

The variable, y = 11°