What is the explicit rule for this geometric sequence?

2/9,2/3,2,6,...




a) an=3(29)^n−1

b) an=3(29)^n

c) an=29⋅3^n−1

d) an=29⋅3n

Respuesta :

Given:

The geometric sequence is [tex]\dfrac{2}{9},\dfrac{2}{3},2,6,...[/tex]

To find:

The explicit formula for the given geometric sequence.

Solution:

We have, a geometric sequence

[tex]\dfrac{2}{9},\dfrac{2}{3},2,6,...[/tex]

Here,

First term : [tex]a=\dfrac{2}{9}[/tex]

Common ratio : [tex]r=\dfrac{\dfrac{2}{3}}{\dfrac{2}{9}}[/tex]

[tex]r=\dfrac{2}{3}\times \dfrac{9}{2}[/tex]

[tex]r=3[/tex]

The explicit formula of a geometric sequence is

[tex]a_n=ar^{n-1}[/tex]

where, a is first term and r is common ratio.

Putting [tex]a=\dfrac{2}{9}[/tex] and r=3, we get

[tex]a_n=\dfrac{2}{9}(3)^{n-1}[/tex]

Therefore, the correct option is c.

Answer:

Option 3 just did the test

Step-by-step explanation: