Respuesta :
Following are the solution to the given expression:
Given:
[tex]\bold{\frac{2x}{x-2}- \frac{x+3}{x+5}}[/tex]
To find:
Expression =?
Solution:
[tex]\to \bold{\frac{2x}{x-2}- \frac{x+3}{x+5}}\\\\\to \bold{\frac{2x(x+5) -(x+3) (x-2)}{(x-2)(x+5)}}\\\\\to \bold{\frac{2x^2+10x -(x^2 -2x+ 3x-6)}{(x-2)(x+5)}}\\\\\to \bold{\frac{2x^2+10x -(x^2 +x-6)}{(x-2)(x+5)}}\\\\\to \bold{\frac{2x^2+10x -x^2 -x+6)}{(x-2)(x+5)}}\\\\\to \bold{\frac{x^2+9x+6}{(x-2)(x+5)}}\\\\[/tex]
Therefore, the answer is "last choice".
Learn more:
brainly.com/question/17079155