ABCD, GB is parallel to AK, AC is congruent to DB, GB is perpendicular to BD, KC is perpendicular to AC
Prove: GB is congruent to KC

USE STATEMENT AND REASONS

ABCD GB is parallel to AK AC is congruent to DB GB is perpendicular to BD KC is perpendicular to AC Prove GB is congruent to KC USE STATEMENT AND REASONS class=

Respuesta :

Answer:

The two column proof is given as follows;

Statement              [tex]{}[/tex]                                 Reason

1. [tex]\overline {ABCD}[/tex], [tex]\overline{GD}[/tex] \\ [tex]\overline {AK}[/tex], [tex]\overline{AC}[/tex] ≅ [tex]\overline {DB}[/tex]      [tex]{}[/tex]       Given

[tex]\overline{GB}[/tex] ⊥ [tex]\overline {BD}[/tex], [tex]\overline{KC}[/tex] ⊥ [tex]\overline {BD}[/tex]

2. ∠KCA = ∠GBD = 90°            [tex]{}[/tex]              Given

3. Therefore,

4. ∠KAB = ∠GDC             [tex]{}[/tex]                       Alternate interior angles

5. ΔGBD ≅ ΔKCA            [tex]{}[/tex]                      By ASA rule of congruency

6. [tex]\overline{GB}[/tex] ≅ [tex]\overline {KC}[/tex]             [tex]{}[/tex]                              By CPCTC

Explanation:

Given that two angles and an included side of triangle ΔGBD are equal to the corresponding two angles and an included side of triangle ΔKCA, therefore, ΔGBD ≅ ΔKCA by the Ange-Side-Angle rule of congruency, therefore, we have;

Segment [tex]\overline{GB}[/tex] is congruent to segment [tex]\overline {KC}[/tex] by Congruent Parts of Congruent Triangles are Congruent, CPCTC.