Respuesta :

Answer:

[tex]p =4[/tex]

Step-by-step explanation:

Given

Variation: Inversely

[tex]p = 12[/tex] when [tex]q = 45[/tex]

Required

Determine p when [tex]q = 135[/tex]

First, we need to determine the relationship between p and q

Since, it is an inverse variation.

The relationship is:

[tex]p\ \alpha\ \frac{1}{q}[/tex]

Convert to an equation

[tex]p= k *\frac{1}{q}[/tex]

[tex]p= \frac{k}{q}[/tex]

Where k = constant of variation

Make k the subject

[tex]k = p * q[/tex]

When [tex]p = 12[/tex] and [tex]q = 45[/tex]

[tex]k = 12 * 45[/tex]

[tex]k = 540[/tex]

To solve for p when q = 135

Substitute 135 for q and 540 for k in [tex]p= \frac{k}{q}[/tex]

[tex]p = \frac{540}{135}[/tex]

[tex]p =4[/tex]