Respuesta :

Answer:

Number of arrangements is 604800

Step-by-step explanation:

Given

[tex]Mouse = 10[/tex] --- Total

[tex]Mouse = 7[/tex] --- Arrangement

Required

Determine the number of ways

Since, it is an arrangement, then we make use of the following permutation formula to answer this question.

[tex]^nP_r = \frac{n!}{(n-r)!}[/tex]

Where

[tex]n = 10[/tex]

[tex]r = 7[/tex]

So:

[tex]^nP_r = \frac{n!}{(n-r)!}[/tex]

[tex]^{10}P_7 = \frac{10!}{(10-7)!}[/tex]

[tex]^{10}P_7 = \frac{10!}{3!}[/tex]

[tex]^{10}P_7 = \frac{3628800}{6}[/tex]

[tex]^{10}P_7 = 604800[/tex]

Hence, number of arrangements is 604800