Answer:
Number of arrangements is 604800
Step-by-step explanation:
Given
[tex]Mouse = 10[/tex] --- Total
[tex]Mouse = 7[/tex] --- Arrangement
Required
Determine the number of ways
Since, it is an arrangement, then we make use of the following permutation formula to answer this question.
[tex]^nP_r = \frac{n!}{(n-r)!}[/tex]
Where
[tex]n = 10[/tex]
[tex]r = 7[/tex]
So:
[tex]^nP_r = \frac{n!}{(n-r)!}[/tex]
[tex]^{10}P_7 = \frac{10!}{(10-7)!}[/tex]
[tex]^{10}P_7 = \frac{10!}{3!}[/tex]
[tex]^{10}P_7 = \frac{3628800}{6}[/tex]
[tex]^{10}P_7 = 604800[/tex]
Hence, number of arrangements is 604800