Respuesta :

Answer:

[tex]x=\frac{3\pi}{4}\\\\x=\frac{5\pi}{4}[/tex]

Step-by-step explanation:

Trigonometric Equations

It's required to solve:

[tex]\cos x+\sqrt{2}=-\cos x[/tex]

for [tex]x\in [0,2\pi)[/tex]

Adding cos x:

[tex]2\cos x+\sqrt{2}=0[/tex]

Subtracting [tex]\sqrt{2}[/tex]

[tex]2\cos x=-\sqrt{2}[/tex]

Dividing by 2:

[tex]\displaystyle \cos x=-\frac{\sqrt{2}}{2}[/tex]

Solving for x:

[tex]\displaystyle x=\arccos\left(-\frac{\sqrt{2}}{2}\right)[/tex]

We need to find the angles whose cosine is [tex]-\frac{\sqrt{2}}{2}[/tex] over the given interval.

These angles lie on the quadrants III and IV respectively and they are:

x=135°, x=225°

Converting to radians:

135 * π / 180 = 3π/4

225 * π / 180 = 5π/4

The two solutions are:

[tex]\mathbf{x=\frac{3\pi}{4}}[/tex]

[tex]\mathbf{x=\frac{5\pi}{4}}[/tex]

Answer:

The correct answer is option C

Step-by-step explanation:

Ver imagen skydreammer50923