Assuming normality, construct the requested confidence interval.

A sociologist is interested in the age at which a mother has her first child. A random sample of 20 recent births yielded an average maternal age to be 30 years with a standard deviation of 6.2 years.

Construct a 99% confidence interval for the mean age at which a mother has her first child.

Can I have some help with solving this problem with a TI84 calculator?

Respuesta :

Answer:

The appropriate response is "(26.03, 33.97)".

Step-by-step explanation:

The given values are:

Average maternal age,

[tex]\bar{x} = 30[/tex]

Standard deviation,

s = 6.2

Random sample,

n = 20

Now,

The degree of freedom will be:

⇒ [tex]df=n-1[/tex]

        [tex]=20-1[/tex]

        [tex]=19[/tex]

"t" at confidence level 99%, will be:

⇒ [tex]\alpha=1-99 \ percent[/tex]

       [tex]=1-0.99[/tex]

       [tex]=0.01[/tex]

⇒ [tex]\frac{\alpha}{2}=\frac{0.01}{2}[/tex]

       [tex]=0.005[/tex]

⇒ [tex]t\frac{\alpha}{2} \ df=t \ 0.005,19[/tex]

By using the student table, we get

             [tex]=2.86 1[/tex]

The margin of error will be:

⇒ [tex]E=\frac{t \alpha}{2,df\times (\frac{s}{\sqrt{n}})}[/tex]

On substituting the estimated values, we get

⇒     [tex]=2.861\times (\frac{6.2}{\sqrt{20}})[/tex]

⇒     [tex]=3.97[/tex]

At 99%, the confidence level will be:

⇒ [tex]\bar{x}-E< \mu <\bar{x}+E[/tex]

⇒ [tex]30-3.97< \mu < 30+3.97[/tex]

⇒ [tex](26.03,33.97)[/tex]

Thus the above is the correct approach.