Respuesta :

Answer:

Quadratic polynomial can be factored using the transformation ax  

2

+bx+c=a(x−x  

1

​  

)(x−x  

2

​  

), where x  

1

​  

 and x  

2

​  

 are the solutions of the quadratic equation ax  

2

+bx+c=0.

−x  

2

−3x+5=0

All equations of the form ax  

2

+bx+c=0 can be solved using the quadratic formula:  

2a

−b±  

b  

2

−4ac

​  

 

​  

. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.

x=  

2(−1)

−(−3)±  

(−3)  

2

−4(−1)×5

​  

 

​  

 

Square −3.

x=  

2(−1)

−(−3)±  

9−4(−1)×5

​  

 

​  

 

Multiply −4 times −1.

x=  

2(−1)

−(−3)±  

9+4×5

​  

 

​  

 

Multiply 4 times 5.

x=  

2(−1)

−(−3)±  

9+20

​  

 

​  

 

Add 9 to 20.

x=  

2(−1)

−(−3)±  

29

​  

 

​  

 

The opposite of −3 is 3.

x=  

2(−1)

3±  

29

​  

 

​  

 

Multiply 2 times −1.

x=  

−2

3±  

29

​  

 

​  

 

Now solve the equation x=  

−2

3±  

29

​  

 

​  

 when ± is plus. Add 3 to  

29

​  

.

x=  

−2

29

​  

+3

​  

 

Divide 3+  

29

​  

 by −2.

x=  

2

−  

29

​  

−3

​  

 

Now solve the equation x=  

−2

3±  

29

​  

 

​  

 when ± is minus. Subtract  

29

​  

 from 3.

x=  

−2

3−  

29

​  

 

​  

 

Divide 3−  

29

​  

 by −2.

x=  

2

29

​  

−3

​  

 

Factor the original expression using ax  

2

+bx+c=a(x−x  

1

​  

)(x−x  

2

​  

). Substitute  

2

−3−  

29

​  

 

​  

 for x  

1

​  

 and  

2

−3+  

29

​  

 

​  

 for x  

2

​  

.

−x  

2

−3x+5=−(x−  

2

−  

29

​  

−3

​  

)(x−  

2

29

​  

−3

​  

)

EVALUATE

5−3x−x  

2Quadratic polynomial can be factored using the transformation ax  

2

+bx+c=a(x−x  

1

​  

)(x−x  

2

​  

), where x  

1

​  

 and x  

2

​  

 are the solutions of the quadratic equation ax  

2

+bx+c=0.

−x  

2

−3x+5=0

All equations of the form ax  

2

+bx+c=0 can be solved using the quadratic formula:  

2a

−b±  

b  

2

−4ac

​  

 

​  

. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.

x=  

2(−1)

−(−3)±  

(−3)  

2

−4(−1)×5

​  

 

​  

 

Square −3.

x=  

2(−1)

−(−3)±  

9−4(−1)×5

​  

 

​  

 

Multiply −4 times −1.

x=  

2(−1)

−(−3)±  

9+4×5

​  

 

​  

 

Multiply 4 times 5.

x=  

2(−1)

−(−3)±  

9+20

​  

 

​  

 

Add 9 to 20.

x=  

2(−1)

−(−3)±  

29

​  

 

​  

 

The opposite of −3 is 3.

x=  

2(−1)

3±  

29

​  

 

​  

 

Multiply 2 times −1.

x=  

−2

3±  

29

​  

 

​  

 

Now solve the equation x=  

−2

3±  

29

​  

 

​  

 when ± is plus. Add 3 to  

29

​  

.

x=  

−2

29

​  

+3

​  

 

Divide 3+  

29

​  

 by −2.

x=  

2

−  

29

​  

−3

​  

 

Now solve the equation x=  

−2

3±  

29

​  

 

​  

 when ± is minus. Subtract  

29

​  

 from 3.

x=  

−2

3−  

29

​  

 

​  

 

Divide 3−  

29

​  

 by −2.

x=  

2

29

​  

−3

​  

 

Factor the original expression using ax  

2

+bx+c=a(x−x  

1

​  

)(x−x  

2

​  

). Substitute  

2

−3−  

29

​  

 

​  

 for x  

1

​  

 and  

2

−3+  

29

​  

 

​  

 for x  

2

​  

.

−x  

2

−3x+5=−(x−  

2

−  

29

​  

−3

​  

)(x−  

2

29

​  

−3

​  

)

EVALUATE

5−3x−x  

2

Step-by-step explanation: