Respuesta :
Answer/Step-by-step explanation:
✔️Using trigonometric ratio, find width of the rectangle, BD:
Thus:
[tex] tan(\theta) = \frac{opposite}{adjacent} [/tex]
Where,
[tex] tan(\theta) = tan(60) = \sqrt{3} [/tex]
Opposite = BD
Adjacent = 7 cm
Plug in the values
[tex] \sqrt{3} = \frac{BD}{7} [/tex]
Multiply both sides by 7
[tex] 7\sqrt{3} = BD [/tex]
[tex] BD = 7\sqrt{3} [/tex]
✔️Using trigonometric ratio, find height of the rectangle, BF:
Thus:
[tex] tan(\theta) = \frac{opposite}{adjacent} [/tex]
Where,
[tex] tan(\theta) = tan(60) = \sqrt{3} [/tex]
Opposite = 6 cm
Adjacent = BF
Plug in the values
[tex] \sqrt{3} = \frac{6}{BF} [/tex]
[tex] BF = \frac{6}{\sqrt{3}} [/tex]
Rationalize
[tex] BF = \frac{6 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} [/tex]
[tex] BF = \frac{6\sqrt{3}}{3} [/tex]
[tex] BF = 2\sqrt{3} [/tex]
✔️Perimeter of rectangle BDEF:
Perimeter = 2(BD + BF)
Plug in the values
[tex] Perimeter = 2(7\sqrt{3} + 2\sqrt{3}) [/tex]
[tex] Perimeter = 2(9\sqrt{3}) [/tex]
[tex] Perimeter = 18\sqrt{3} [/tex]
✔️Area of the rectangle BDEF:
Area = BD × BF
Plug in the values
[tex] Area = 7\sqrt{3} \times 2\sqrt{3} [/tex]
[tex] Area = 7 \times 2\sqrt{3 \times 3} [/tex]
[tex] Area = 14 \times 3 [/tex]
[tex] Area = 42 [/tex]