Respuesta :

Answer/Step-by-step explanation:

✔️Using trigonometric ratio, find width of the rectangle, BD:

Thus:

[tex] tan(\theta) = \frac{opposite}{adjacent} [/tex]

Where,

[tex] tan(\theta) = tan(60) = \sqrt{3} [/tex]

Opposite = BD

Adjacent = 7 cm

Plug in the values

[tex] \sqrt{3} = \frac{BD}{7} [/tex]

Multiply both sides by 7

[tex] 7\sqrt{3} = BD [/tex]

[tex] BD = 7\sqrt{3} [/tex]

✔️Using trigonometric ratio, find height of the rectangle, BF:

Thus:

[tex] tan(\theta) = \frac{opposite}{adjacent} [/tex]

Where,

[tex] tan(\theta) = tan(60) = \sqrt{3} [/tex]

Opposite = 6 cm

Adjacent = BF

Plug in the values

[tex] \sqrt{3} = \frac{6}{BF} [/tex]

[tex] BF = \frac{6}{\sqrt{3}} [/tex]

Rationalize

[tex] BF = \frac{6 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} [/tex]

[tex] BF = \frac{6\sqrt{3}}{3} [/tex]

[tex] BF = 2\sqrt{3} [/tex]

✔️Perimeter of rectangle BDEF:

Perimeter = 2(BD + BF)

Plug in the values

[tex] Perimeter = 2(7\sqrt{3} + 2\sqrt{3}) [/tex]

[tex] Perimeter = 2(9\sqrt{3}) [/tex]

[tex] Perimeter = 18\sqrt{3} [/tex]

✔️Area of the rectangle BDEF:

Area = BD × BF

Plug in the values

[tex] Area = 7\sqrt{3} \times 2\sqrt{3} [/tex]

[tex] Area = 7 \times 2\sqrt{3 \times 3} [/tex]

[tex] Area = 14 \times 3 [/tex]

[tex] Area = 42 [/tex]